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Abstract

I present a method for developing extensible and modular computational models with-
out sacrificing serial or parallel performance or source code readability. By using
a generic simulation cell method I show that it is possible to combine several dis-
tinct computational models to run in the same computational grid without requiring5

any modification of existing code. This is an advantage for the development and testing
of computational modeling software as each submodel can be developed and tested
independently and subsequently used without modification in a more complex cou-
pled program. Support for parallel programming is also provided by allowing users
to select which simulation variables to transfer between processes via a Message10

Passing Interface library. This allows the communication strategy of a program to
be formalized by explicitly stating which variables must be transferred between pro-
cesses for the correct functionality of each submodel and the entire program. The
generic simulation cell class presented here requires a C++ compiler that supports
variadic templates which were standardized in 2011 (C++11). The code is available15

at: https://github.com/nasailja/gensimcell for everyone to use, study, modify and redis-
tribute; those that do are kindly requested to cite this work.

1 Introduction

Computational modeling has become one of the cornerstones of many scientific dis-
ciplines, helping to understand observations and to form and test new hypotheses.20

Here a computational model is defined as numerically solving a set of mathematical
equations with one or more variables using a discrete representation of time and the
modeled volume. Today the bottleneck of computational modeling is shifting from hard-
ware performance towards that of software development, more specifically to the ability
to develop more complex models and to verify and validate them in a timely and cost-25

efficient manner (Post and Votta, 2005). The importance of verification and validation
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is highlighted by the fact that even a trivial bug can have devastating consequences
not only for users of the affected software but for others who try to publish contradicting
results (Miller, 2006).

Modular software can be (re)used with minimal modification and is advantageous
not only for reducing development effort but also for verifying and validating a new5

program. For example the number of errors in software components that are reused
without modification can be an order of magnitude lower than in components which
are either developed from scratch or modified extensively before use (Thomas et al.,
1997). The verification and validation (V & V) of a program consisting of several mod-
ules should start from V & V of each module separately before proceeding to combi-10

nations of modules and finally the entire program (Oberkampf and Trucano, 2002).
Modules that have been V & V’d and are used without modification increase the con-
fidence in the functionality of the larger program and decrease the effort required for
final V & V.

Reusable software that does not depend on any specific type of data can be written15

by using, for example, generic programming (Musser and Stepanov, 1989). Waligora
et al. (1995) reported that the use of object-oriented design and generics of the Ada
programming language at Flight Dynamics Division of NASA’s Goddard Space Flight
Center had increased sofware reuse by a factor of three and, in addition to other bene-
fits, reduced the error rates and costs substantially. With C++ generic software can be20

developed without sacrificing computational performance through the use of compile-
time template parameters for which the compiler can perform optimizations that would
not be possible otherwise (Stroustrup, 1999).

Generic and modular software is especially useful for developing complex computa-
tional models that couple together several different and possibly independently devel-25

oped codes. From a software development point of view code coupling can be defined
as simply making the variables stored by different codes available to each other. In
this sense even a model for the flow of incompressible, homogeneous and non-viscous
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fluid without external forcing

∂v
∂t

= −v · (∇v)−∇p; ∇2p = −∇ · (v · (∇v))

where v is velocity and p is pressure, can be viewed as a coupled model as there are
two equations that can be solved by different solvers. If a separate solver is written
for each equation and both solvers are simulating the same volume with identical dis-5

cretization, coupling is only a matter of data exchange. In this work the term solver will
be used when referring to any code/function/module/library which takes as input the
data of a cell and its N neighbors and produces the next state of the cell (next step,
iteration, temporal substep, etc.).

The methods of communicating data between solvers can vary widely depending on10

the available development effort, the programming language(s) involved and details of
the specific codes. Probably the easiest coupling method to develop is to transfer data
through the filesystem, i.e. at every step each solver writes the data needed by other
solvers into a file and reads the data produced by other solvers from other files. This
method is especially suitable as a first version of coupling when the codes have been15

written in different programming languages and use non-interoperable data structures.
Performance-wise a more optimal way to communicate between solvers in a coupled

program is to use shared memory, as is done for example in Hill et al. (2004), Jöckel
et al. (2005), Larson et al. (2005), Toth et al. (2005), Zhang and Parashar (2006) and
Redler et al. (2010), but this technique still has shortcomings. Perhaps the most impor-20

tant one is the fact that the data types used by solvers are not visible to outside, thus
making intrusive modifications (i.e. modifications to existing code or data structures)
necessary in order to transfer data between solvers. The data must be converted to
an intermediate format by the solver “sending” the data and subsequently converted
to the internal format by the solver “receiving” the data. The probability of bugs is also25

increased as the code doing the end-to-end conversion is scattered in two different
places and the compiler cannot perform static type checking for the final coupled pro-
gram. These problems can be alleviated by e.g. writing the conversion code in another

4580

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4577/2014/gmdd-7-4577-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4577/2014/gmdd-7-4577-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 4577–4602, 2014

Generic simulation
cell method

I. Honkonen

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

language and outputting the final code of both submodels automatically (Eller et al.,
2009). Interpolation between different grids and coordinate systems that many of the
frameworks mentioned previously perform can also be viewed as part of the data trans-
fer problem but is outside the scope of this work.

A distributed memory parallel program can require significant amounts of code for5

arranging the transfers of different variables between processes, for example, if the
amount of data required by some variable(s) changes as a function of both space and
time. The problem is even harder if a program consists of several coupled models
with different time stepping strategies and/or variables whose memory requirements
change at run time. Futhermore, modifying an existing time stepping strategy or adding10

another model into the program can require substatial changes to existing code in order
to accomodate additional model variables and/or temporal substeps.

1.1 Generic simulation cell method

A generic simulation cell class is presented that provides an abstraction for the storage
of simulation variables and the transfer of variables between processes in a distributed15

memory parallel program. Each variable to be stored in the generic cell class is given
as a template parameter to the class. The type of each variable is not restricted in
any way by the cell class or solvers developed using this abstraction, enabling generic
programming in simulation development all the way from the top down to a very low
level. By using variadic templates of the 2011 version of the C++ standard, the total20

number of variables is only limited by the compiler implementation and a minimum of
1024 is recommended by C++11 (see e.g. Annex B in Du Toit, 2012).

By using the generic cell abstraction it is possible to develop distributed memory
parallel computational models in a way that easily allows one to combine an arbitrary
number of separate models without modifying any existing code. This is demonstrated25

by combining parallel models for Conway’s Game of Life, scalar advection and La-
grangian transport of particles in an external velocity field. In order to keep the pre-
sented programs succinct, combining computational models is defined here as running
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each model on the same grid structure with identical domain decomposition accross
processes. This is not mandatory for the generic cell approach and, for example, the
case of different domain decomposition of submodels is discussed in Sect. 4. Also the
definition of modifying existing code excludes copying and pasting unmodified code
into a new file.5

Section 2 introduces the generic simulation cell class concept via a serial implemen-
tation and Sect. 3 extends it to distributed memory parallel programs. Section 4 shows
that it is possible to combine three different computational models without modifying
any existing code by using the generic simulation cell method. Section 5 shows that the
generic cell implementation developed here does not seem to have an adverse effect10

on either serial or parallel computational performance. The code is available at: https:
//github.com/nasailja/gensimcell for everyone to use, study, modify and redistribute;
users are kindly requested to cite this work. The relative paths to source code files given
in the rest of the text refer to the version of the generic simulation cell tagged as 0.5 in
the git repository and is available at: https://github.com/nasailja/gensimcell/tree/0.5/.15

2 Serial implementation

Figure 1 shows a basic implementation of the generic simulation cell class that does not
provide support for MPI applications and is not const-correct but is otherwise complete.
The cell class takes as input an arbitrary number of template parameters that corre-
spond to variables to be stored in the cell. Each varible only defines its type through20

the name data_type (e.g. lines 5 and 6 in Fig. 2) and is otherwise empty. When the
cell class is given one variable as a template argument the code on lines 3..13 is used.
The variable given to the cell class as a template parameter is stored as a private
member of the cell class on line 5 and access to it is provided by the cell’s [] oper-
ator overloaded for the variable’s class on lines 8..12. When given multiple variables25

as template arguments the code on lines 15..33 is used which similarly stores the first
variable as a private member and provides access to it via the [] operator. Additionally
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the cell class derives from from itself with one less variable on line 21. This recursion
is stopped by eventually inheriting the one variable version of the cell class. Access to
the private data members representing all variables are provided by the respective []
operators which are made available to outside of the cell class on line 26. The memory
layout of variables in an instance of the cell class depends on the compiler implemen-5

tation and can include, for example, padding between variables given as consecutive
template parameters. This also applies to variables stored in “ordinary” structures and
in both cases if, for example, several values must be stored contiguously in memory
a container guaranteeing this should be used such as std::array or std::vector.

Figure 2 shows a complete serial implementation of Conway’s Game of Life (GoL)10

using the generic simulation cell class. A version of this example with console output
is available at: examples/game_of_life/serial.cpp1. Lines 5..7 define the variables to be
used in the model and the cell type to be used in the model grid. Lines 10..20 create
the simulation grid and initialize the simulation with a pseudorandom initial condition.
The time stepping loop spans lines 22..57. The [] operator is used to obtain a reference15

to the data of all variables e.g. on lines 17 and 42. Lines 26 and 34 provide a short
hand name for the curret cell and its neighbors respectively. Using the generic cell
class adds hardly any code compared to a traditional implementation (e.g. Fig. 4 in
Honkonen et al., 2013) and allows the types of the variables used in the model to be
defined outside of both the grid which stores the simulation variables and the solver20

functions which use the variables to calculate the solution.
Figure 3 shows excerpts from serial versions of programs modeling advection and

particle propagation in prescribed velocity fields. The full examples are available at: ex-
amples/advection/serial.cpp2 and examples/particle_propagation/serial.cpp3. The vari-
ables of both models are defined similarly to Fig. 2 and the [] operator is used to refer25

to the variables’ data in each cell.
1https://github.com/nasailja/gensimcell/blob/0.5/examples/game_of_life/serial.cpp
2https://github.com/nasailja/gensimcell/blob/0.5/examples/advection/serial.cpp
3https://github.com/nasailja/gensimcell/blob/0.5/examples/particle_propagation/serial.cpp

4583

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4577/2014/gmdd-7-4577-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4577/2014/gmdd-7-4577-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
https://github.com/nasailja/gensimcell/blob/0.5/examples/game_of_life/serial.cpp
https://github.com/nasailja/gensimcell/blob/0.5/examples/advection/serial.cpp
https://github.com/nasailja/gensimcell/blob/0.5/examples/particle_propagation/serial.cpp


GMDD
7, 4577–4602, 2014

Generic simulation
cell method

I. Honkonen

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3 Parallel implementation

In a parallel computational model variables in neighboring cells must be transferred
between processes in order to calculate the solution at the next time step or iteration.
On the other hand it might not be necessary to transfer all variables in each communi-
cation as one solver could be using higher order time stepping than others and require5

more iterations for each time step. Or, for example, when modeling an incompressible
fluid the Poisson’s equation for pressure must be solved at each time step, i.e. iterated
in parallel until some norm of the residual becomes small enough, during which time
other variables need not be transferred. Several model variables can also be used for
debugging and need not always be transferred between processes.10

The generic cell class provides support for parallel programs via
a get_mpi_datatype() member function which can be used to query what data
should be transferred to/from a generic cell with MPI. The transfer of one or more
variables can be switched on or off via a function overloaded for each variable on
a cell-by-cell basis. This allows the communication strategy of a program to be15

formalized by explicitly stating which variables must be transferred between processes
for the correct functionality of each solver and the entire program. The parallel code
presented here is built on top of the dccrg library Honkonen et al. (2013) which handles
the details of e.g. transferring the data of neighboring simulation cells accross process
boundaries by calling the get_mpi_datatype() member function of each cell when20

needed.
Standard types whose size is known at compile-time (e.g. int, float,

std::array<int, N>, but see Sect. 3 for the general case) can be transferred with-
out extra code from the user. Functions are provided by the cell class for switching on
or off the transfer of one or more variables in all instances of a particular type of cell25

(set_transfer_all()) and for switching on or off the transfers in each instance separately
(set_transfer()). The former function takes as arguments a boost::tribool value and the
affected variables. If the triboolean value is determined (true of false) then all instances
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behave identically for the affected variables, otherwise (indeterminate) the decision
to transfer the affected variables is controlled on a cell-by-cell basis by the latter
function. The functions are implemented recursively using variadic templates in order
to allow the user to switch on/off the transfer of arbitrary combinations of variables
in the same function call. When the cell class returns the MPI transfer information5

via its get_mpi_datatype() member function, all variables are iterated through at
compile-time and only those that should be transferred are added at run-time to the
final MPI_Datatype returned by the function.

Figure 4 shows excerpts from the parallel version of the GoL example implemented
using the generic simulation cell class and the dccrg grid library. The cell type used10

by this version (line 7) is identical to the type used in the serial version on line 7 of
Fig. 2. In the parallel version the for loops over cells and their neighbors inside the time
stepping loop have been moved to separate functions called solve and apply_solution
respectively. At each time step, before starting cell data transfers between processes
at process boundaries (line 21), the transfer of required variables, in this case whether15

the cell is alive or not, is switched on in all cells (line 20). No additional code is required
for the transfer logic in contrast to a program not using the generic cell class (e.g.
lines 12 and 13 in Fig. 4 of Honkonen et al., 2013). The function solving the system
for a given list of cells (called solve in the namespace gol), which in this case counts
the number of life neighbors, is called on lines 22..26 with the cell class and variables20

to use internally given as template parameters. This makes the function accept cells
consisting of arbitrary variables and also allows one to change the variables used by
the function easily.

The strategy used in Fig. 4 for overlapping computation and communication is also
used in the other parallel examples. After starting data transfers between the outer cells25

of different processes the solution is calculated in the inner cells. Inner cells are defined
as cells that do not consider cells on other processes as neighbors and that are not
considered as neighbors of cells on other processes. Outer cells are defined as cells
other than the inner cells of a process. Once the data of other processes’ outer cells
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has arrived the solution is calculated in local outer cells. After this the solution can be
applied to inner cells and when the data of outer cells has arrived to other processes
the solution can also be applied to the outer cells.

Figure 5 shows the variables used in the parallel particle propagation example
available at: examples/particle_propagation/parallel/4. The particles in each cell are5

stored as a vector of arrays, i.e. the dimensionality of particle coordinates is known
at compile time but the number of particle in each cell is not. As MPI requires that
the (maximum) amount of data to receive from another process is known in advance
the number of particles in a cell must be transferred in a separate message before
the particles themselves. Here the number of particles is stored as a separate vari-10

able named Number_Of_Particles. The transfer of variables with complex types, for
example types whose size or memory layout changes at run time, is supported via
the get_mpi_datatype() mechanism, i.e. such types must define a get_mpi_datatype()
function which provides the required transfer information to the generic cell class. For
example in Fig. 5 the variables themselves again only define the type of the variable15

on lines 19 and 64 while the types themselves contain the logic related to MPI transfer
information. In order to be able to reliably move particles between cells on different
processes, i.e. without creating duplicates or loosing particles, the particle propagator
uses two collections of particles, one for particles that stay inside of the cell in which
they are stored (lines 1..16) and another for particles which have moved outside of their20

cell (lines 22..61). The latter variable includes information about which cell a particles
have moved to.

4 Combination of three simulations

The examples of parallel models shown in Sect. 3 can all be combined into one
model without modifying any existing code by copying and pasting the relevant parts25

4https://github.com/nasailja/gensimcell/tree/0.5/examples/particle_propagation/parallel/
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from the main.cpp file of each model into a combined cpp file available at: exam-
ples/combined/parallel.cpp5. This is enabled by using a separate namespace for the
solvers and variables of each submodel, as e.g. two of them use a variable with an
identical name (Velocity) and all submodels include a function named solve. All sub-
models of the combined model run in the same discretized volume and with identical5

domain decomposition. This is not mandatory though as the cell id list given to each
solver need not be identical but in this case the memory for all variables in all cells
is always allocated when using simple variables shown e.g. in Figs. 2 or 5. If sub-
models always run in non-overlapping or slightly overlapping regions of the simulated
volume, and/or with different domain decomposition, the memory required for the vari-10

ables can be allocated at run time in regions/processes where the variables are used.
This can potentially be accomplished easily by wrapping the type of each variable in
the boost::optional6 type, for example.

4.1 Coupling

In the combined model shown in previous section the submodels cannot affect each15

other as they all use different variables and are thus unable to modify each other’s data.
In order to couple any two or more submodels new code must be written or existing
code must be modified. The complexity of this task depends solely on the nature of the
coupling. In simple cases where the variables used by one solver are only switched to
variables of another solver, only the template parameters given to the solver have to be20

switched. The template parameters decide which variables a solver should use, i.e. the
GoL solver (examples/game_of_life/parallel/gol_solve.hpp7) internally uses a template
parameter Is_Alive_T to refer to a variable which records whether a cell is alive or not

5https://github.com/nasailja/gensimcell/blob/0.5/examples/combined/parallel.cpp
6http://www.boost.org/doc/libs/1_55_0/libs/optional/doc/html/index.html
7https://github.com/nasailja/gensimcell/blob/0.5/examples/game_of_life/parallel/gol_solve.

hpp
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and the actual variable used for that purpose (Is_Alive) is given to the solver function
in the main program (examples/game_of_life/parallel/main.cpp8).

Figure 6 shows an example of a one way coupling of the parallel particle propagation
model with the advection model by periodically using the velocity field of the advection
model in the particle propagation model. On line 6 the particle solver is called with5

the velocity field of the advection model as the velocity variable to use while on line
15 the particle model’s regular velocity field is used. More complex cases of coupling,
which require e.g. additional variables, are also simple to accomplish from the software
development point of view. Additional variables can be freely inserted into the generic
cell class and used by new couplers without affecting any other submodels.10

5 Effect on serial and parallel performance

In order to be usable in practice the generic cell class should not slow down a com-
putational model too much. I test this using two programs: a serial GoL model and
a parallel particle propagation model. The tests are conducted on a four core 2.6 GHz
Intel Core i7 CPU with 256 kB L2 cache per core, 16 GB of 1600 MHz DDR3 RAM15

and the following software (installed from MacPorts where applicable): OS X 10.9.2,
GCC 4.8.2_0, Open MPI 1.7.4, Boost 1.55.0_1 and dccrg commit 7d5580a30 dated
12 January 2014 from the c++11 branch at https://gitorious.org/dccrg/dccrg. The test
programs are compiled with -O3 -std=c++0x.

5.1 Serial performance20

Serial performance of the generic cell is tested by playing GoL for 30 000 steps on
a 100 by 100 grid with periodic boundaries and allocated at compile time. Performance
is compared against an implementation using struct { bool; int; }; as the cell

8https://github.com/nasailja/gensimcell/blob/0.5/examples/game_of_life/parallel/main.cpp
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type. Both implementations are available in the directory tests/serial/game_of_life9.
Each timing is obtained by executing 5 runs, discarding the slowest and fastest runs
and averaging the remaining 3 runs. As shown in Table 1 serial performance is not
affected by the generic cell class, but the memory layout of variables regardless of the
cell type used affects performance over 10 %. Column 2 specifies whether is_alive or5

live_neighbors is stored at a lower memory address in each cell. By default the memory
alignment of the variables is implementation defined but on the last two rows of Table 1
alignas (8) is used to obtain 8 byte alignment for both variables. The order of the vari-
ables in memory in a generic cell consisting of more than one variable is not defined
by the standard. On the tested system the variables are laid out in memory by GCC in10

reverse order with respect to the order of the template arguments. Other compilers do
not show as large differences between different ordering of variables, with ICC 14.0.2
all run times are about 6 s using either -O3 or -fast (alignas is not yet supported) and
with Clang 3.4 from MacPorts all run times are about 3.5 s (about 3.6 s using alignas).

5.2 Parallel performance15

Parallel performance of the generic cell class is evaluated with a particle propagation
test which uses more complex variable types than the GoL test in order to emphasize
the computational cost of setting up MPI transfer information in the generic cell class
and a manually written reference cell class. Both implementations are available in the
directory tests/parallel/particle_propagation10. Parallel tests are run using 3 processes20

and the final time is the average of the times reported by each process. Similarly to
the serial case each test is executed 5 times, outliers are discarded and the final result
averaged over the remaining 3 runs. The tests are run on a 203 grid without periodic
boundaries and RANDOM load balancing is used to emphasize the cost of MPI trans-
fers. Again there is an insignificant difference between the run times of both versions25

9https://github.com/nasailja/gensimcell/tree/0.5/tests/serial/game_of_life/
10https://github.com/nasailja/gensimcell/tree/0.5/tests/parallel/particle_propagation/
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as the run time for the generic cell class version is 2.86 s while the reference imple-
mentation runs in 2.92 s. The output files of the different versions are bit identical if the
same number of processes is used. When using recursive coordinate bisection load
balancing the run times are also comparable but almost an order of magnitude lower
(about 0.5 s). A similar result is expected for a larger number of processes as the bot-5

tleneck will likely be in the actual transfer of data instead of the logic for setting up the
transfers.

6 Converting existing software

Existing software can be gradually converted to use a generic cell syntax but the details
depend heavily on the modularity of said software and especially on the way data in10

transferred between processes. If a grid library decides what to transfer and where and
the cells provide this information via an MPI datatype, conversion will likely require only
small changes.

Figure 7 shows an example of converting a Conway’s Game of Life program using
cell-based storage (after Fig. 4 of Honkonen et al., 2013) to the application program-15

ming interface used by the generic cell class. In this case the underlying grid library
handles data transfers between processes so the only additions required are empty
classes for denoting simulation variables and the corresponding [] operators for ac-
cessing the variables’ data. With these additions the program can be converted step-
by-step to use the generic cell class API and once complete the cell implementation20

shown in Fig. 7 can be swapped with the generic cell.

7 Discussion

The presented generic simulation cell method has several advantages over traditional
implementations:
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1. The changes requred for combining and coupling models are minimal and in the
presented examples no changes to existing code are required for combining mod-
els. This is advantageous for program development as submodels can be tested
and verified independently and also subsequently used without modification which
decreases the possibility of bugs and increases confidense in the correct function-5

ing of the larger program.

2. The generic simulation cell method enables zero-copy code coupling as an in-
termediate representation for model variables is not necessary due to the data
types of simulation variables being visible outside of each model. Thus if coupled
models use a compatible representation for data, such as IEEE floating point,10

the variables of one model can be used directly by another one without the first
model having to export the data to an intermediate format. This again decreases
the chance for bugs by reducing the required development effort and by allowing
the compiler to perform type checking for the entire program and warn in cases of
e.g. undefined behavior (Wang et al., 2012).15

3. Arguably code readability is also improved by making simulation variables sep-
arate classes and composing models from a set of such variables. Shorthand
notation for code which resembles traditional scientific code is also possible by
using the same instance of a variable for accessing its data in cells:

const Mass_Density Rho{};20

const Background_Magnetic_Field B0{};
cell_data[Rho] = ...;
cell_data[B0][0] = ...;
cell_data[B0][1] = ...;
...25

The possibility of using a generic simulation cell approach in the traditional high-
performance language of choice – Fortran – seems unlikely as Fortran currently lacks
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support for compile-time generic programming (McCormack, 2005). For example a re-
cently presented computational fluid dynamics package implemented in Fortran, using
an object oriented approach and following good software development practices (Za-
ghi, 2014), uses hard-coded names for variables throughout the application. Thus if the
names of any variables had to be changed for some reason, e.g. coupling to another5

model using identical variable names, all code using those variables would have to be
modified and tested to make sure no bugs have been introduced.

8 Conclusions

I present a generic simulation cell method which allows one to write generic and mod-
ular computational models without sacrificing serial or parallel performance or code10

readability. I show that by using this method it is possible to combine several computa-
tional models without modifying any existing code and only write new code for coupling
models. This is a significant advantage for model development which reduces the prob-
ability of bugs and eases development, testing and validation of computational models.
Performance tests indicate that the effect of the presented generic simulation cell class15

on serial and parallel performance is negligible.

Acknowledgements. Alex Glocer for insightful discussions and the NASA Postdoctoral Program
for financial support.
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Table 1. Run times of serial GoL programs using different cell types and memory layouts for
their variables compiled with GCC 4.8.2.

Cell type Memory layout Run time (s)

generic bool first 1.422
generic int first 1.601
struct bool first 1.424
struct int first 1.603
struct bool first, both aligned to 8 B 1.552
struct int first, both aligned to 8 B 1.522
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Honkonen: Generic simulation cell method 3

rest of the text refer to the version of the generic simula-
tion cell tagged as 0.5 in the git repository and is available at:175

https://github.com/nasailja/gensimcell/tree/0.5/.

2 Serial implementation

Figure 1 shows a basic implementation of the generic simula-
tion cell class that does not provide support for MPI applica-
tions and is not const-correct but is otherwise complete. The180

cell class takes as input an arbitrary number of template pa-
rameters that correspond to variables to be stored in the cell.
Each varible only defines its type through the name data_type
(e.g. lines 5 and 6 in Figure 2) and is otherwise empty. When
the cell class is given one variable as a template argument185

the code on lines 3..13 is used. The variable given to the cell
class as a template parameter is stored as a private member
of the cell class on line 5 and access to it is provided by the
cell’s [] operator overloaded for the variable’s class on lines
8..12. When given multiple variables as template arguments190

the code on lines 15..33 is used which similarly stores the
first variable as a private member and provides access to it
via the [] operator. Additionally the cell class derives from
from itself with one less variable on line 21. This recursion
is stopped by eventually inheriting the one variable version of195

the cell class. Access to the private data members represent-
ing all variables are provided by the respective [] operators
which are made available to outside of the cell class on line
26. The memory layout of variables in an instance of the cell
class depends on the compiler implementation and can in-200

clude, for example, padding between variables given as con-
secutive template parameters. This also applies to variables
stored in "ordinary" structures and in both cases if, for exam-
ple, several values must be stored contiguously in memory a
container guaranteeing this should be used such as std::array205

or std::vector.
Figure 2 shows a complete serial implementation of Con-

way’s Game of Life (GoL) using the generic simulation cell
class. A version of this example with console output is avail-
able at examples/game_of_life/serial.cpp1. Lines 5..7 define210

the variables to be used in the model and the cell type to
be used in the model grid. Lines 10..20 create the simulation
grid and initialize the simulation with a pseudorandom initial
condition. The time stepping loop spans lines 22..57. The []
operator is used to obtain a reference to the data of all vari-215

ables e.g. on lines 17 and 42. Lines 26 and 34 provide a short
hand name for the curret cell and its neighbors respectively.
Using the generic cell class adds hardly any code compared
to a traditional implementation (e.g. Figure 4 in Honkonen
et al., 2013) and allows the types of the variables used in the220

model to be defined outside of both the grid which stores the
simulation variables and the solver functions which use the
variables to calculate the solution.

1https://github.com/nasailja/gensimcell/blob/0.5/examples/
game_of_life/serial.cpp

1 template <c l a s s . . . Var iab les> c l a s s Ce l l ;
2

3 template <c l a s s Variable> c l a s s Cel l<Variable> {
4 pr i va t e :
5 typename Var iab le : : data type data ;
6

7 pub l i c :
8 typename Var iab le : : data type& operator [ ] (
9 const Var iab le&

10 ) {
11 re turn th i s−>data ;
12 }
13 } ;
14

15 template <
16 c l a s s Current Var iab le ,
17 c l a s s . . . Res t Of Var iab l e s
18 > c l a s s Cel l<
19 Current Var iab le ,
20 Rest Of Var iab l e s . . .
21 > : pub l i c Cel l<Rest Of Var iab l e s . . . > {
22 pr i va t e :
23 typename Current Var iab le : : data type data ;
24

25 pub l i c :
26 us ing Cel l<Rest Of Var iab l e s . . . > : : operator [ ] ;
27

28 typename Current Var iab le : : data type& operator [ ] (
29 const Current Var iab le&
30 ) {
31 re turn th i s−>data ;
32 }
33 } ;

Fig. 1. Serial implementation of the generic simulation cell class
that is not const-correct but is otherwise complete.

Figure 3 shows excerpts from serial versions of
programs modeling advection and particle propagation225

in prescribed velocity fields. The full examples are
available at examples/advection/serial.cpp2 and exam-
ples/particle_propagation/serial.cpp3. The variables of both
models are defined similarly to Figure 2 and the [] operator
is used to refer to the variables’ data in each cell.230

3 Parallel implementation

In a parallel computational model variables in neighboring
cells must be transferred between processes in order to cal-
culate the solution at the next time step or iteration. On the
other hand it might not be necessary to transfer all variables235

in each communication as one solver could be using higher
order time stepping than others and require more iterations
for each time step. Or, for example, when modeling an in-
compressible fluid the Poisson’s equation for pressure must
be solved at each time step, i.e. iterated in parallel until some240

norm of the residual becomes small enough, during which

2https://github.com/nasailja/gensimcell/blob/0.5/examples/
advection/serial.cpp

3https://github.com/nasailja/gensimcell/blob/0.5/examples/
particle_propagation/serial.cpp

Figure 1. Serial implementation of the generic simulation cell class that is not const-correct but
is otherwise complete.
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4 Honkonen: Generic simulation cell method

1 #inc lude ” array ”
2 #inc lude ” c s t d l i b ”
3 #inc lude ” g en s imce l l . hpp”
4

5 s t r u c t I s A l i v e { us ing data type = bool ; } ;
6 s t r u c t Live Neighbors { us ing data type = in t ; } ;
7 us ing Cel l T = gen s imce l l : : Ce l l<I s A l i v e , Live Neighbors >;
8

9 i n t main ( ) {
10 constexpr s i z e t width = 10 , he ight = 10 ;
11 std : : array<std : : array<Cell T , width>, he ight> g r id ;
12 // i n i t i a l c ond i t i on
13 f o r ( auto& row : g r id ) {
14 f o r ( auto& c e l l : row ) {
15 c e l l [ L ive Neighbors ( ) ] = 0 ;
16 i f ( rand ( ) < RANDMAX / 10)
17 c e l l [ I s A l i v e ( ) ] = true ;
18 e l s e
19 c e l l [ I s A l i v e ( ) ] = f a l s e ;
20 }}
21

22 f o r ( i n t s tep = 0 ; s tep < 20 ; s tep++) {
23 // c o l l e c t l i v e ne ighbor counts
24 f o r ( s i z e t row = 0 ; row < he ight ; row++) {
25 f o r ( s i z e t c o l = 0 ; c o l < width ; c o l++) {
26 auto& c e l l = gr id [ row ] [ c o l ] ;
27

28 // neighbor index o f f s e t s : +1, 0 , −1
29 f o r ( auto r ow o f f s e t : {1ul , 0ul , width − 1}) {
30 f o r ( auto c o l o f f s e t : {1ul , 0ul , he ight − 1}) {
31 i f ( r ow o f f s e t == 0 and c o l o f f s e t == 0)
32 cont inue ;
33 // p e r i o d i c boundar ies
34 const auto& neighbor
35 = gr id [
36 ( row + row o f f s e t ) % he ight
37 ] [
38 ( c o l + c o l o f f s e t ) % width
39 ] ;
40

41 i f ( ne ighbor [ I s A l i v e ( ) ] )
42 c e l l [ L ive Neighbors ()]++;
43 }}
44 }}
45 // s e t new s t a t e
46 f o r ( s i z e t row = 0 ; row < he ight ; row++) {
47 f o r ( s i z e t c o l = 0 ; c o l < width ; c o l++) {
48 Cel l T& c e l l = gr id [ row ] [ c o l ] ;
49

50 i f ( c e l l [ L ive Ne ighbors ( ) ] == 3)
51 c e l l [ I s A l i v e ( ) ] = true ;
52 e l s e i f ( c e l l [ L ive Neighbors ( ) ] != 2)
53 c e l l [ I s A l i v e ( ) ] = f a l s e ;
54

55 c e l l [ L ive Neighbors ( ) ] = 0 ;
56 }}
57 }
58 re turn 0 ;
59 }

Fig. 2. A serial program playing Conway’s Game of Life imple-
mented using the generic simulation cell class.

time other variables need not be transferred. Several model
variables can also be used for debugging and need not always
be transferred between processes.

The generic cell class provides support for parallel pro-245

grams via a get_mpi_datatype() member function which can
be used to query what data should be transferred to/from
a generic cell with MPI. The transfer of one or more vari-
ables can be switched on or off via a function overloaded for
each variable on a cell-by-cell basis. This allows the com-250

munication strategy of a program to be formalized by ex-
plicitly stating which variables must be transferred between

1 /∗ advect ion ∗/
2 s t r u c t Density { us ing data type = double ; } ;
3 s t r u c t Dens ity Flux { us ing data type = double ; } ;
4 s t r u c t Ve loc i ty { us ing data type = std : : array<double , 2>; } ;
5 us ing Cel l T = gen s imce l l : : Ce l l<Density , Density Flux , Ve loc i ty >;
6 us ing Grid T = array<array<Cell T , width>, he ight >;
7

8 void app l y s o l u t i on (Grid T& gr id ) {
9 f o r ( auto& row : g r id ) {

10 f o r ( auto& c e l l : row ) {
11 c e l l [ Density ( ) ] += c e l l [ Dens i ty Flux ( ) ] ;
12 c e l l [ Dens i ty Flux ( ) ] = 0 ;
13 }}
14 }
15

16 /∗ p a r t i c l e propagat ion ∗/
17 s t r u c t Ve loc i ty { us ing data type = array<double , 2>; } ;
18 s t r u c t P a r t i c l e s { us ing data type = vector<array<double , 2>>; } ;
19 us ing Cel l T = gen s imce l l : : Ce l l<Veloc i ty , Pa r t i c l e s> Cel l T ;
20 us ing Grid T = array<array<Cell T , width>, he ight >;
21

22 void i n i t i a l i z e ( Grid T& gr id ) {
23 f o r ( s i z e t row i = 0 ; row i < he ight ; row i++) {
24 f o r ( s i z e t c e l l i = 0 ; c e l l i < width ; c e l l i ++) {
25

26 const auto
27 c e l l c e n t e r = g e t c e l l c e n t e r ( gr id , { c e l l i , row i } ) ,
28 c e l l s i z e = g e t c e l l s i z e ( gr id , { c e l l i , row i } ) ;
29

30 auto& c e l l = gr id [ row i ] [ c e l l i ] ;
31

32 c e l l [ P a r t i c l e s ( ) ] . push back ({
33 c e l l c e n t e r [ 0 ] − c e l l s i z e [ 0 ] / 4 ,
34 c e l l c e n t e r [ 1 ] − c e l l s i z e [ 1 ] / 4
35 } ) ;
36 }}
37 }

Fig. 3. Excerpts from separate serial programs using the generic
simulation cell class modeling advection and particle propagation
in a prescribed velocity field.

processes for the correct functionality of each solver and
the entire program. The parallel code presented here is built
on top of the dccrg library Honkonen et al. (2013) which255

handles the details of e.g. transferring the data of neighbor-
ing simulation cells accross process boundaries by calling
the get_mpi_datatype() member function of each cell when
needed.

Standard types whose size is known at compile-time (e.g.260

int, float, std::array<int, N>, but see Section 3 for the gen-
eral case) can be transferred without extra code from the
user. Functions are provided by the cell class for switching
on or off the transfer of one or more variables in all in-
stances of a particular type of cell (set_transfer_all()) and265

for switching on or off the transfers in each instance sep-
arately (set_transfer()). The former function takes as argu-
ments a boost::tribool value and the affected variables. If
the triboolean value is determined (true of false) then all
instances behave identically for the affected variables, oth-270

erwise (indeterminate) the decision to transfer the affected
variables is controlled on a cell-by-cell basis by the latter
function. The functions are implemented recursively using
variadic templates in order to allow the user to switch on/off
the transfer of arbitrary combinations of variables in the same275

function call. When the cell class returns the MPI transfer in-
formation via its get_mpi_datatype() member function, all

Figure 2. A serial program playing Conway’s Game of Life implemented using the generic
simulation cell class.
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4 Honkonen: Generic simulation cell method

1 #inc lude ” array ”
2 #inc lude ” c s t d l i b ”
3 #inc lude ” g en s imce l l . hpp”
4

5 s t r u c t I s A l i v e { us ing data type = bool ; } ;
6 s t r u c t Live Neighbors { us ing data type = in t ; } ;
7 us ing Cel l T = gen s imce l l : : Ce l l<I s A l i v e , Live Neighbors >;
8

9 i n t main ( ) {
10 constexpr s i z e t width = 10 , he ight = 10 ;
11 std : : array<std : : array<Cell T , width>, he ight> g r id ;
12 // i n i t i a l c ond i t i on
13 f o r ( auto& row : g r id ) {
14 f o r ( auto& c e l l : row ) {
15 c e l l [ L ive Neighbors ( ) ] = 0 ;
16 i f ( rand ( ) < RANDMAX / 10)
17 c e l l [ I s A l i v e ( ) ] = true ;
18 e l s e
19 c e l l [ I s A l i v e ( ) ] = f a l s e ;
20 }}
21

22 f o r ( i n t s tep = 0 ; s tep < 20 ; s tep++) {
23 // c o l l e c t l i v e ne ighbor counts
24 f o r ( s i z e t row = 0 ; row < he ight ; row++) {
25 f o r ( s i z e t c o l = 0 ; c o l < width ; c o l++) {
26 auto& c e l l = gr id [ row ] [ c o l ] ;
27

28 // neighbor index o f f s e t s : +1, 0 , −1
29 f o r ( auto r ow o f f s e t : {1ul , 0ul , width − 1}) {
30 f o r ( auto c o l o f f s e t : {1ul , 0ul , he ight − 1}) {
31 i f ( r ow o f f s e t == 0 and c o l o f f s e t == 0)
32 cont inue ;
33 // p e r i o d i c boundar ies
34 const auto& neighbor
35 = gr id [
36 ( row + row o f f s e t ) % he ight
37 ] [
38 ( c o l + c o l o f f s e t ) % width
39 ] ;
40

41 i f ( ne ighbor [ I s A l i v e ( ) ] )
42 c e l l [ L ive Neighbors ()]++;
43 }}
44 }}
45 // s e t new s t a t e
46 f o r ( s i z e t row = 0 ; row < he ight ; row++) {
47 f o r ( s i z e t c o l = 0 ; c o l < width ; c o l++) {
48 Cel l T& c e l l = gr id [ row ] [ c o l ] ;
49

50 i f ( c e l l [ L ive Ne ighbors ( ) ] == 3)
51 c e l l [ I s A l i v e ( ) ] = true ;
52 e l s e i f ( c e l l [ L ive Neighbors ( ) ] != 2)
53 c e l l [ I s A l i v e ( ) ] = f a l s e ;
54

55 c e l l [ L ive Neighbors ( ) ] = 0 ;
56 }}
57 }
58 re turn 0 ;
59 }

Fig. 2. A serial program playing Conway’s Game of Life imple-
mented using the generic simulation cell class.

time other variables need not be transferred. Several model
variables can also be used for debugging and need not always
be transferred between processes.

The generic cell class provides support for parallel pro-245

grams via a get_mpi_datatype() member function which can
be used to query what data should be transferred to/from
a generic cell with MPI. The transfer of one or more vari-
ables can be switched on or off via a function overloaded for
each variable on a cell-by-cell basis. This allows the com-250

munication strategy of a program to be formalized by ex-
plicitly stating which variables must be transferred between

1 /∗ advect ion ∗/
2 s t r u c t Density { us ing data type = double ; } ;
3 s t r u c t Dens ity Flux { us ing data type = double ; } ;
4 s t r u c t Ve loc i ty { us ing data type = std : : array<double , 2>; } ;
5 us ing Cel l T = gen s imce l l : : Ce l l<Density , Density Flux , Ve loc i ty >;
6 us ing Grid T = array<array<Cell T , width>, he ight >;
7

8 void app l y s o l u t i on (Grid T& gr id ) {
9 f o r ( auto& row : g r id ) {

10 f o r ( auto& c e l l : row ) {
11 c e l l [ Density ( ) ] += c e l l [ Dens i ty Flux ( ) ] ;
12 c e l l [ Dens i ty Flux ( ) ] = 0 ;
13 }}
14 }
15

16 /∗ p a r t i c l e propagat ion ∗/
17 s t r u c t Ve loc i ty { us ing data type = array<double , 2>; } ;
18 s t r u c t P a r t i c l e s { us ing data type = vector<array<double , 2>>; } ;
19 us ing Cel l T = gen s imce l l : : Ce l l<Veloc i ty , Pa r t i c l e s> Cel l T ;
20 us ing Grid T = array<array<Cell T , width>, he ight >;
21

22 void i n i t i a l i z e ( Grid T& gr id ) {
23 f o r ( s i z e t row i = 0 ; row i < he ight ; row i++) {
24 f o r ( s i z e t c e l l i = 0 ; c e l l i < width ; c e l l i ++) {
25

26 const auto
27 c e l l c e n t e r = g e t c e l l c e n t e r ( gr id , { c e l l i , row i } ) ,
28 c e l l s i z e = g e t c e l l s i z e ( gr id , { c e l l i , row i } ) ;
29

30 auto& c e l l = gr id [ row i ] [ c e l l i ] ;
31

32 c e l l [ P a r t i c l e s ( ) ] . push back ({
33 c e l l c e n t e r [ 0 ] − c e l l s i z e [ 0 ] / 4 ,
34 c e l l c e n t e r [ 1 ] − c e l l s i z e [ 1 ] / 4
35 } ) ;
36 }}
37 }

Fig. 3. Excerpts from separate serial programs using the generic
simulation cell class modeling advection and particle propagation
in a prescribed velocity field.

processes for the correct functionality of each solver and
the entire program. The parallel code presented here is built
on top of the dccrg library Honkonen et al. (2013) which255

handles the details of e.g. transferring the data of neighbor-
ing simulation cells accross process boundaries by calling
the get_mpi_datatype() member function of each cell when
needed.

Standard types whose size is known at compile-time (e.g.260

int, float, std::array<int, N>, but see Section 3 for the gen-
eral case) can be transferred without extra code from the
user. Functions are provided by the cell class for switching
on or off the transfer of one or more variables in all in-
stances of a particular type of cell (set_transfer_all()) and265

for switching on or off the transfers in each instance sep-
arately (set_transfer()). The former function takes as argu-
ments a boost::tribool value and the affected variables. If
the triboolean value is determined (true of false) then all
instances behave identically for the affected variables, oth-270

erwise (indeterminate) the decision to transfer the affected
variables is controlled on a cell-by-cell basis by the latter
function. The functions are implemented recursively using
variadic templates in order to allow the user to switch on/off
the transfer of arbitrary combinations of variables in the same275

function call. When the cell class returns the MPI transfer in-
formation via its get_mpi_datatype() member function, all

Figure 3. Excerpts from separate serial programs using the generic simulation cell class mod-
eling advection and particle propagation in a prescribed velocity field.
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Honkonen: Generic simulation cell method 5

1 . . .
2 #inc lude ” dccrg . hpp”
3 #inc lude ” dcc rg ca r t e s i an geomet ry . hpp”
4 #inc lude ” g en s imce l l . hpp”
5 . . .
6 i n t main ( i n t argc , char ∗ argv [ ] ) {
7 us ing Ce l l = go l : : Ce l l ;
8 i f ( MPI Init(&argc , &argv ) != MPI SUCCESS) { . . . }
9

10 dccrg : : Dccrg<Cel l , dccrg : : Cartesian Geometry> g r id ;
11 . . .
12 go l : : i n i t i a l i z e <Cel l , go l : : I s A l i v e , go l : : L ive Neighbors >( g r id ) ;
13

14 const std : : vector<u int64 t>
15 i n n e r c e l l s = gr id . g e t l o c a l c e l l s n o t o n p r o c e s s b o unda r y ( ) ,
16 o u t e r c e l l s = gr id . g e t l o c a l c e l l s o n p r o c e s s b o und a r y ( ) ;
17 . . .
18 whi le ( s imu la t i on t ime <= M PI) {
19 . . .
20 Ce l l : : s e t t r a n s f e r a l l ( true , go l : : I s A l i v e ( ) ) ;
21 g r id . s t a r t r emote ne i ghbor copy update s ( ) ;
22 go l : : so lve<
23 Cel l ,
24 go l : : I s A l i v e ,
25 go l : : L ive Neighbors
26 >( i n n e r c e l l s , g r i d ) ;
27 g r id . wa i t r emote ne i ghbo r copy updat e r e c e i v e s ( ) ;
28 go l : : so lve < . . .>( o u t e r c e l l s , g r i d ) ;
29 go l : : app ly so lu t i on < . . .>( i n n e r c e l l s , g r i d ) ;
30 g r id . wa i t r emote ne ighbor copy update sends ( ) ;
31 go l : : app ly so lu t i on < . . .>( o u t e r c e l l s , g r i d ) ;
32 s imu la t i on t ime += t ime s t ep ;
33 }
34 MPI Final ize ( ) ;
35 re turn EXIT SUCCESS ;
36 }

Fig. 4. Excerpts from a parallel program playing Conway’s Game
of Life implemented using the generic simulation cell class and the
dccrg grid library (Honkonen et al., 2013).

variables are iterated through at compile-time and only those
that should be transferred are added at run-time to the final
MPI_Datatype returned by the function.280

Figure 4 shows excerpts from the parallel version of the
GoL example implemented using the generic simulation cell
class and the dccrg grid library. The cell type used by this
version (line 7) is identical to the type used in the serial ver-
sion on line 7 of Figure 2. In the parallel version the for285

loops over cells and their neighbors inside the time stepping
loop have been moved to separate functions called solve and
apply_solution respectively. At each time step, before start-
ing cell data transfers between processes at process bound-
aries (line 21), the transfer of required variables, in this case290

whether the cell is alive or not, is switched on in all cells (line
20). No additional code is required for the transfer logic in
contrast to a program not using the generic cell class (Honko-
nen et al., 2013, e.g. lines 12 and 13 in Figure 4 of). The func-
tion solving the system for a given list of cells (called solve295

in the namespace gol), which in this case counts the number
of life neighbors, is called on lines 22..26 with the cell class
and variables to use internally given as template parameters.
This makes the function accept cells consisting of arbitrary
variables and also allows one to change the variables used by300

the function easily.
The strategy used in Figure 4 for overlapping computa-

tion and communication is also used in the other parallel ex-
amples. After starting data transfers between the outer cells

of different processes the solution is calculated in the inner305

cells. Inner cells are defined as cells that do not consider cells
on other processes as neighbors and that are not considered
as neighbors of cells on other processes. Outer cells are de-
fined as cells other than the inner cells of a process. Once the
data of other processes’ outer cells has arrived the solution310

is calculated in local outer cells. After this the solution can
be applied to inner cells and when the data of outer cells has
arrived to other processes the solution can also be applied to
the outer cells.

Figure 5 shows the variables used in the paral-315

lel particle propagation example available at exam-
ples/particle_propagation/parallel/4. The particles in each
cell are stored as a vector of arrays, i.e. the dimensional-
ity of particle coordinates is known at compile time but the
number of particle in each cell is not. As MPI requires that320

the (maximum) amount of data to receive from another pro-
cess is known in advance the number of particles in a cell
must be transferred in a separate message before the particles
themselves. Here the number of particles is stored as a sep-
arate variable named Number_Of_Particles. The transfer of325

variables with complex types, for example types whose size
or memory layout changes at run time, is supported via the
get_mpi_datatype() mechanism, i.e. such types must define
a get_mpi_datatype() function which provides the required
transfer information to the generic cell class. For example in330

Figure 5 the variables themselves again only define the type
of the variable on lines 19 and 64 while the types themselves
contain the logic related to MPI transfer information. In order
to be able to reliably move particles between cells on differ-
ent processes, i.e. without creating duplicates or loosing par-335

ticles, the particle propagator uses two collections of parti-
cles, one for particles that stay inside of the cell in which they
are stored (lines 1..16) and another for particles which have
moved outside of their cell (lines 22..61). The latter variable
includes information about which cell a particles have moved340

to.

4 Combination of three simulations

The examples of parallel models shown in Section 3 can all
be combined into one model without modifying any exist-
ing code by copying and pasting the relevant parts from the345

main.cpp file of each model into a combined cpp file avail-
able at examples/combined/parallel.cpp5. This is enabled by
using a separate namespace for the solvers and variables of
each submodel, as e.g. two of them use a variable with an
identical name (Velocity) and all submodels include a func-350

tion named solve. All submodels of the combined model run
in the same discretized volume and with identical domain

4https://github.com/nasailja/gensimcell/tree/0.5/examples/
particle_propagation/parallel/

5https://github.com/nasailja/gensimcell/blob/0.5/examples/
combined/parallel.cpp

Figure 4. Excerpts from a parallel program playing Conway’s Game of Life implemented using
the generic simulation cell class and the dccrg grid library (Honkonen et al., 2013).
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6 Honkonen: Generic simulation cell method

1 s t r u c t I n t e r n a l P a r t i c l e S t o r a g e {
2 std : : vector<std : : array<double , 3>> coo rd ina t e s ;
3

4 std : : tuple<
5 void ∗ , int , MPI Datatype
6 > get mpi datatype ( ) const {
7 re turn std : : make tuple (
8 ( void ∗) th i s−>coo rd ina t e s . data ( ) ,
9 3 ∗ th i s−>coo rd ina t e s . s i z e ( ) ,

10 MPI DOUBLE
11 ) ;
12 }
13 void r e s i z e ( const s i z e t new s i z e ) {
14 th i s−>coo rd ina t e s . r e s i z e ( new s i z e ) ;
15 }
16 } ;
17

18 s t r u c t I n t e r n a l P a r t i c l e s {
19 us ing data type = I n t e r n a l P a r t i c l e S t o r a g e ;
20 } ;
21

22 s t r u c t Ex t e r na l Pa r t i c l e S t o r a g e {
23 std : : vector<std : : array<double , 3>> coo rd ina t e s ;
24 std : : vector<u int64 t> d e s t i n a t i o n s ;
25

26 std : : tuple<
27 void ∗ , int , MPI Datatype
28 > get mpi datatype ( ) const {
29 std : : array<int , 2> counts {
30 3 ∗ th i s−>coo rd ina t e s . s i z e ( ) ,
31 1 ∗ th i s−>d e s t i n a t i o n s . s i z e ( )
32 }
33 std : : array<MPI Aint , 2> di sp lacements {
34 0 , r e i n t e r p r e t c a s t<
35 const char ∗ const
36 >( th i s−>d e s t i n a t i o n s . data ( ) )
37 − r e i n t e r p r e t c a s t<
38 const char ∗ const
39 >( th i s−>coo rd ina t e s . data ( ) )
40 } ;
41 std : : array<MPI Datatype , 2> datatypes {
42 MPI DOUBLE, MPI UINT64 T
43 }
44

45 MPI Datatype f i n a l d a t a t yp e ;
46 MPI Type create struct (
47 2 , counts . data ( ) , d i sp lacements . data ( ) ,
48 datatypes . data ( ) , &f i n a l d a t a t yp e
49 ) ;
50

51 re turn std : : make tuple (
52 ( void ∗) th i s−>coo rd ina t e s . data ( ) ,
53 1 , f i n a l d a t a t yp e ;
54 ) ;
55 }
56

57 void r e s i z e ( const s i z e t new s i z e ) {
58 th i s−>coo rd ina t e s . r e s i z e ( new s i z e ) ;
59 th i s−>d e s t i n a t i o n s . r e s i z e ( new s i z e ) ;
60 }
61 } ;
62

63 s t r u c t Ex t e r n a l Pa r t i c l e s {
64 us ing data type = Ext e rna l Pa r t i c l e S t o r a g e ;
65 } ;

Fig. 5. Variables used in the example parallel particle propagation
model showing the logic of providing MPI transfer information for
the variables’ data.

decomposition. This is not mandatory though as the cell id
list given to each solver need not be identical but in this case
the memory for all variables in all cells is always allocated355

when using simple variables shown e.g. in Figures 2 or 5. If
submodels always run in non-overlapping or slightly over-
lapping regions of the simulated volume, and/or with dif-
ferent domain decomposition, the memory required for the
variables can be allocated at run time in regions/processes360

where the variables are used. This can potentially be accom-
plished easily by wrapping the type of each variable in the
boost::optional6 type, for example.

4.1 Coupling

In the combined model shown in previous section the sub-365

models cannot affect each other as they all use differ-
ent variables and are thus unable to modify each other’s
data. In order to couple any two or more submodels new
code must be written or existing code must be modified.
The complexity of this task depends solely on the na-370

ture of the coupling. In simple cases where the variables
used by one solver are only switched to variables of an-
other solver, only the template parameters given to the
solver have to be switched. The template parameters de-
cide which variables a solver should use, i.e. the GoL375

solver (examples/game_of_life/parallel/gol_solve.hpp7) in-
ternally uses a template parameter Is_Alive_T to refer to
a variable which records whether a cell is alive or not
and the actual variable used for that purpose (Is_Alive) is
given to the solver function in the main program (exam-380

ples/game_of_life/parallel/main.cpp8).
Figure 6 shows an example of a one way coupling of

the parallel particle propagation model with the advection
model by periodically using the velocity field of the advec-
tion model in the particle propagation model. On line 6 the385

particle solver is called with the velocity field of the advec-
tion model as the velocity variable to use while on line 15 the
particle model’s regular velocity field is used. More complex
cases of coupling, which require e.g. additional variables, are
also simple to accomplish from the software development390

point of view. Additional variables can be freely inserted into
the generic cell class and used by new couplers without af-
fecting any other submodels.

5 Effect on serial and parallel performance

In order to be usable in practice the generic cell class should395

not slow down a computational model too much. I test this

6http://www.boost.org/doc/libs/1_55_0/libs/optional/doc/html/
index.html

7https://github.com/nasailja/gensimcell/blob/0.5/examples/
game_of_life/parallel/gol_solve.hpp

8https://github.com/nasailja/gensimcell/blob/0.5/examples/
game_of_life/parallel/main.cpp

Figure 5. Variables used in the example parallel particle propagation model showing the logic
of providing MPI transfer information for the variables’ data.
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Honkonen: Generic simulation cell method 7

1 i f ( s td : : fmod ( s imulat ion t ime , 1) < 0 . 5 ) {
2 p a r t i c l e : : so lve<
3 Cel l ,
4 p a r t i c l e : : Number Of Inte rna l Par t i c l e s ,
5 p a r t i c l e : : Number Of Externa l Part ic l e s ,
6 advect ion : : Ve loc i ty , // c lock−wise
7 p a r t i c l e : : I n t e r n a l P a r t i c l e s ,
8 p a r t i c l e : : Ex t e r n a l Pa r t i c l e s
9 >( t ime step , o u t e r c e l l s , g r i d )

10 } e l s e {
11 p a r t i c l e : : so lve<
12 Cel l ,
13 p a r t i c l e : : Number Of Inte rna l Par t i c l e s ,
14 p a r t i c l e : : Number Of Externa l Part ic l e s ,
15 p a r t i c l e : : Ve loc i ty , // counter c lock−wise
16 p a r t i c l e : : I n t e r n a l P a r t i c l e s ,
17 p a r t i c l e : : Ex t e r n a l Pa r t i c l e s
18 >( t ime step , o u t e r c e l l s , g r i d )
19 }

Fig. 6. Example of one way coupling between the parallel advec-
tion and particle propagation models. The clock-wise rotating ve-
locity field of the advection model (line 6) is periodically used by
the particle propagation model instead of the counter clock-wise ro-
tating velocity field of the particle propagation model (line 15).

using two programs: a serial GoL model and a parallel par-
ticle propagation model. The tests are conducted on a four
core 2.6 GHz Intel Core i7 CPU with 256 kB L2 cache per
core, 16 GB of 1600 MHz DDR3 RAM and the follow-400

ing software (installed from MacPorts where applicable): OS
X 10.9.2, GCC 4.8.2_0, Open MPI 1.7.4, Boost 1.55.0_1
and dccrg commit 7d5580a30 dated 2014-01-12 from the
c++11 branch at https://gitorious.org/dccrg/dccrg. The test
programs are compiled with -O3 -std=c++0x.405

5.1 Serial performance

Serial performance of the generic cell is tested by
playing GoL for 30 000 steps on a 100 by 100
grid with periodic boundaries and allocated at compile
time. Performance is compared against an implemen-410

tation using struct { bool; int; }; as the cell
type. Both implementations are available in the directory
tests/serial/game_of_life9. Each timing is obtained by exe-
cuting 5 runs, discarding the slowest and fastest runs and av-
eraging the remaining 3 runs. As shown in Table 5.1 serial415

performance is not affected by the generic cell class, but the
memory layout of variables regardless of the cell type used
affects performance over 10 %. Column 2 specifies whether
is_alive or live_neighbors is stored at a lower memory ad-
dress in each cell. By default the memory alignment of the420

variables is implementation defined but on the last two rows
of Table 5.1 alignas(8) is used to obtain 8 byte alignment

9https://github.com/nasailja/gensimcell/tree/0.5/tests/serial/
game_of_life/

Table 1. Run times of serial GoL programs using different cell
types and memory layouts for their variables compiled with GCC
4.8.2.

Cell type Memory layout Run time (s)

generic bool first 1.422

generic int first 1.601

struct bool first 1.424

struct int first 1.603

struct bool first, both aligned to 8 B 1.552

struct int first, both aligned to 8 B 1.522

for both variables. The order of the variables in memory in
a generic cell consisting of more than one variable is not de-
fined by the standard. On the tested system the variables are425

laid out in memory by GCC in reverse order with respect to
the order of the template arguments. Other compilers do not
show as large differences between different ordering of vari-
ables, with ICC 14.0.2 all run times are about 6 s using either
-O3 or -fast (alignas is not yet supported) and with Clang 3.4430

from MacPorts all run times are about 3.5 s (about 3.6 s using
alignas).

5.2 Parallel performance

Parallel performance of the generic cell class is evaluated
with a particle propagation test which uses more complex435

variable types than the GoL test in order to emphasize the
computational cost of setting up MPI transfer information in
the generic cell class and a manually written reference cell
class. Both implementations are available in the directory
tests/parallel/particle_propagation10. Parallel tests are run us-440

ing 3 processes and the final time is the average of the times
reported by each process. Similarly to the serial case each
test is executed 5 times, outliers are discarded and the final
result averaged over the remaining 3 runs. The tests are run
on a 203 grid without periodic boundaries and RANDOM445

load balancing is used to emphasize the cost of MPI trans-
fers. Again there is an insignificant difference between the
run times of both versions as the run time for the generic cell
class version is 2.86 s while the reference implementation
runs in 2.92 s. The output files of the different versions are450

bit identical if the same number of processes is used. When
using recursive coordinate bisection load balancing the run
times are also comparable but almost an order of magnitude
lower (about 0.5 s). A similar result is expected for a larger
number of processes as the bottleneck will likely be in the455

10https://github.com/nasailja/gensimcell/tree/0.5/tests/parallel/
particle_propagation/

Figure 6. Example of one way coupling between the parallel advection and particle propagation
models. The clock-wise rotating velocity field of the advection model (line 6) is periodically used
by the particle propagation model instead of the counter clock-wise rotating velocity field of the
particle propagation model (line 15).
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8 Honkonen: Generic simulation cell method

actual transfer of data instead of the logic for setting up the
transfers.

6 Converting existing software

Existing software can be gradually converted to use a generic
cell syntax but the details depend heavily on the modularity460

of said software and especially on the way data in transferred
between processes. If a grid library decides what to transfer
and where and the cells provide this information via an MPI
datatype, conversion will likely require only small changes.

Figure 7 shows an example of converting a Conway’s465

Game of Life program using cell-based storage (after Figure
4 of Honkonen et al., 2013) to the application programming
interface used by the generic cell class. In this case the under-
lying grid library handles data transfers between processes
so the only additions required are empty classes for denoting470

simulation variables and the corresponding [] operators for
accessing the variables’ data. With these additions the pro-
gram can be converted step-by-step to use the generic cell
class API and once complete the cell implementation shown
in Figure 7 can be swapped with the generic cell.475

7 Discussion

The presented generic simulation cell method has several ad-
vantages over traditional implementations:

1. The changes requred for combining and coupling mod-
els are minimal and in the presented examples no480

changes to existing code are required for combining
models. This is advantageous for program development
as submodels can be tested and verified independently
and also subsequently used without modification which
decreases the possibility of bugs and increases confi-485

dense in the correct functioning of the larger program.

2. The generic simulation cell method enables zero-copy
code coupling as an intermediate representation for
model variables is not necessary due to the data types
of simulation variables being visible outside of each490

model. Thus if coupled models use a compatible repre-
sentation for data, such as IEEE floating point, the vari-
ables of one model can be used directly by another one
without the first model having to export the data to an in-
termediate format. This again decreases the chance for495

bugs by reducing the required development effort and
by allowing the compiler to perform type checking for
the entire program and warn in cases of e.g. undefined
behavior (Wang et al., 2012).

3. Arguably code readability is also improved by mak-500

ing simulation variables separate classes and composing
models from a set of such variables. Shorthand notation
for code which resembles traditional scientific code is

1 s t r u c t g am e o f l i f e c e l l {
2 i n t data [ 2 ] ;
3

4 std : : tuple<
5 void ∗ ,
6 int ,
7 MPI Datatype
8 > get mpi datatype ( ) const {
9 re turn std : : make tuple (

10 ( void ∗) &( th i s−>data [ 0 ] ) ,
11 1 ,
12 MPI INT
13 ) ;
14 }
15 } ;
16

17 s t r u c t I s A l i v e {} ;
18 s t r u c t Live Neighbors {} ;
19

20 s t r u c t g am e o f l i f e c e l l {
21 . . .
22 i n t& operator [ ] ( const I s A l i v e&) {
23 re turn th i s−>data [ 0 ] ;
24 }
25

26 i n t& operator [ ] ( const L ive Neighbors&) {
27 re turn th i s−>data [ 1 ] ;
28 }
29 } ;

Fig. 7. An example of converting existing software to use an ap-
plication programming interface (API) identical to the generic cell
class. The cell class defined on lines 1..15? is usable as is e.g. with
dccrg (Honkonen et al., 2013). API conversion consists of adding
empty classes (lines 17 and 18?) for denoting simulation variables,
and adding [] operators (lines 22..28?) for accessing the variables’
data.

also possible by using the same instance of a variable
for accessing its data in cells:505

const Mass_Density Rho{};
const Background_Magnetic_Field B0{};
cell_data[Rho] = ...;
cell_data[B0][0] = ...;
cell_data[B0][1] = ...;510

...

The possibility of using a generic simulation cell approach
in the traditional high-performance language of choice -
Fortran - seems unlikely as Fortran currently lacks support
for compile-time generic programming (McCormack, 2005).515

For example a recently presented computational fluid dy-
namics package implemented in Fortran, using an object ori-
ented approach and following good software development
practices (Zaghi, 2014), uses hard-coded names for variables
throughout the application. Thus if the names of any vari-520

ables had to be changed for some reason, e.g. coupling to

Figure 7. An example of converting existing software to use an application programming inter-
face (API) identical to the generic cell class. The cell class defined on lines 1..15 is usable as
is e.g. with dccrg (Honkonen et al., 2013). API conversion consists of adding empty classes
(lines 17 and 18) for denoting simulation variables, and adding [] operators (lines 22..28) for
accessing the variables’ data.
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